Characteristics of Corn Stover Pretreated with Liquid Hot Water and Fed-Batch Semi-Simultaneous Saccharification and Fermentation for Bioethanol Production
نویسندگان
چکیده
Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism.
منابع مشابه
Tween 40 pretreatment of unwashed water-insoluble solids of reed straw and corn stover pretreated with liquid hot water to obtain high concentrations of bioethanol
BACKGROUND Liquid hot water (LHW) pretreatment is an effective and environmentally friendly method to produce bioethanol with lignocellulosic materials. In our previous study, high ethanol concentration and ethanol yield were obtained from water-insoluble solids (WIS) of reed straw and corn stover pretreated with LHW by using fed-batch semi-simultaneous saccharification and fermentation (S-SSF)...
متن کاملBioethanol Fermentation from Non-treated and Pretreated Corn Stover Using Aspergillus Oryzae
A comparison was studied for non-treated and pretreated corn stover with dilute alkaline peroxide and dilute acid treatment respectively for bioethanol production by simultaneous saccharification and fermentation (SSF) process in a continuous stirred batch bioreactor using fungi Aspergillus oryzae. The optimum parameters for bioethanol fermentation were: time, 48 h; pH, 6.0; temperature, 50oC; ...
متن کاملApplication of a slurry feeder to 1 and 3 stage continuous simultaneous saccharification and fermentation of dilute acid pretreated corn stover.
Continuous operation is often chosen for conceptual designs of biological processing of cellulosic biomass to ethanol to achieve higher volumetric productivities. Furthermore, continuous stirred tank reactors (CSTR) can handle higher solids concentrations than possible in batch mode due to broth thinning at partial conversion in a continuous fermentor. However, experience and literature data ar...
متن کاملPretreatment on corn stover with low concentration of formic acid.
Bioethanol derived from lignocellulosic biomass has the potential to replace gasoline. Cellulose is naturally recalcitrant to enzymatic attack, and it also surrounded by the matrix of xylan and lignin, which enhances the recalcitrance. Therefore, lignocellulosic materials must be pretreated to make the cellulose easily degraded into sugars and further fermented to ethanol. In this work, hydroth...
متن کاملOptimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover
Background Cellulolytic enzymes produced by Trichoderma reesei are widely studied for biomass bioconversion, and enzymatic components vary depending on different inducers. In our previous studies, a mixture of glucose and disaccharide (MGD) was developed and used to induce cellulase production. However, the enzymatic profile induced by MGD is still not defined, and further optimization of the e...
متن کامل